20.02.2024

Сила притяжения на луне в шесть раз меньше, чем на земле. Сила тяжести на других планетах: подробный разбор Сила притяжения луны на поверхности земли


Предметы или люди, как, например, показанный на рисунке передвигающийся прыжками космонавт, весят на Луне меньше, чем на Земле, из-за более слабого гравитационного поля Луны. Сила тяжести - это фундаментальная сила тяготения, которая распространяется через космическое пространство и действует на все физические тела.

Гравитационное притяжение между любыми двумя телами, например, между планетой и человеком, может быть определено количественно, если известна масса каждого тела и расстояние между ними. Масса, сохраняющаяся постоянной, является количественной мерой материи, содержащейся в теле. Что касается веса, то он является мерой силы тяжести, действующей на тело. Чем сильнее гравитационное поле, тем больше будет вес тела и тем выше будет его ускорение; чем слабее гравитационное поле, тем меньше будет вес тела и тем меньшее ускорение оно будет испытывать. Силовые характеристики гравитационных полей зависят от размеров тел, которые они окружают, поэтому вес любого тела не является фиксированной величиной.

На изображении Луны (слева) и Земли (справа) :

  1. На Луне вес космонавта уменьшается в шесть раз по сравнению с его весом на Земле, поскольку сила притяжения на Луне составляет всего одну шестую часть от земной.
  2. По возвращении с Луны (рисунок справа), космонавт, показанный на рисунке под текстом, весит на Земле в шесть раз больше, чем он весил на Луне. Имея большую массу, чем Луна, Земля развивает более высокую силу гравитационного притяжения.

Подобно камням в колодце

В гравитационных полях, схематически изображенных на рисунке под текстом, Луна (левая часть рисунка) создает меньшую силу притяжения, чем более массивная Земля (правая часть рисунка). Преодоление силы тяжести похоже на вылезание из колодца. Чем больше сила тяжести, тем глубже колодец и тем отвесней его стенки.

Сущность взаимного тяготения тел

Луна и Земля (соответственно, левый и правый рисунки над текстом) притягивают к себе тела, находящиеся около их поверхности; тела в свою очередь также создают силу притяжения, пропорциональную их массе. Большее расстояние между Луной и человеком на левом рисунке и меньшая масса Луны способствуют более слабой гравитационной связи, в то время как у пары на правом рисунке большая масса Земли обеспечивает более сильное притяжение.

Представим себе, что мы отправляемся в путешествие по Солнечной системе. Какова сила тяжести на других планетах? На каких мы будем легче, чем на Земле, а на каких тяжелее?

Пока мы еще не покинули Землю, проделаем такой опыт: мысленно опустимся на один из земных полюсов, а затем представим себе, что мы перенеслись на экватор. Интересно, изменился ли наш вес?

Известно, что вес любого тела определяется силой притяжения (силой тяжести). Она прямо пропорциональна массе планеты и обратно пропорциональна квадрату ее радиуса (об этом мы впервые узнали из школьного учебника физики). Следовательно, если бы наша Земля была строго шарообразна, то вес каждого предмета при перемещении по ее поверхности оставался бы неизменным.

Но Земля - не шар. Она сплюснута у полюсов и вытянута вдоль экватора. Экваториальный радиус Земли длиннее полярного на 21 км. Выходит, что сила земного притяжения действует на экваторе как бы издалека. Вот почему вес одного и того же тела в разных местах Земли неодинаков. Тяжелее всего предметы должны быть на земных полюсах и легче всего - на экваторе. Здесь они становятся легче на 1/190 по сравнению с их весом на полюсах. Конечно, обнаружить это изменение веса можно только с помощью пружинных весов. Небольшое уменьшение веса предметов на экваторе происходит также за счет центробежной силы, возникающей вследствие вращения Земли. Таким образом, вес взрослого человека, прибывшего с высоких полярных широт на экватор, уменьшится в общей сложности примерно на 0,5 кг.

Теперь уместно спросить: а как будет изменяться вес человека, путешествующего по планетам Солнечной системы?

Наша первая космическая станция - Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53: 9,31 = 0,38). Таким же образом можно определить напряжение силы тяжести на любом небесном теле.

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70 кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса):

Плутон 4,5 Меркурий 26,5 Марс 26,5 Сатурн 62,7 Уран 63,4 Венера 63,4 Земля 70,0 Нептун 79,6 Юпитер 161,2
Как видим, Земля по напряжению силы тяжести занимает промежуточное положение между планетами-гигантами. На двух из них - Сатурне и Уране - сила тяжести несколько меньше, чем на Земле, а на двух других - Юпитере и Нептуне - больше. Правда, для Юпитера и Сатурна вес дан с учетом действия центробежной силы (они быстро вращаются). Последняя уменьшает вес тела на экваторе на несколько процентов.

Следует заметить, что для планет-гигантов значения веса даны на уровне верхнего облачного слоя, а не на уровне твердой поверхности, как у земноподобных планет (Меркурия, Венеры, Земли, Марса) и у Плутона.

На поверхности Венеры человек окажется почти на 10% легче, чем на Земле. Зато на Меркурии и на Марсе уменьшение веса произойдет в 2,6 раза. Что же касается Плутона, то на нем человек будет в 2,5 раза легче, чем на Луне, или в 15,5 раза легче, чем в земных условиях.

А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 2 т и было бы мгновенно раздавлено собственной тяжестью. Впрочем, еще не достигнув Солнца, все превратилось бы в раскаленный газ. Другое дело - крошечные небесные тела, такие как спутники Марса и астероиды. На многих из них по легкости можно уподобиться... воробью!

Вполне понятно, что путешествовать по другим планетам человек может только в специальном герметичном скафандре, снабженном приборами системы жизнеобеспечения. Вес скафандра американских астронавтов, в котором они выходили на поверхность Луны, равен примерно весу взрослого человека. Поэтому приведенные нами значения веса космического путешественника на других планетах надо по меньшей мере удвоить. Только тогда мы получим весовые величины, близкие к действительным.

Напомним сначала, что представляет собой сила тяготения. Согласно преданию, яблоко, упавшее с дерева, позволило Ньютону открыть закон всемирного тяготения (гравитации), что значительно ускорило развитие физики и астрономии. Теперь известно, что сила тяготения существует во всем космосе. Именно эта сила управляет движением всех небесных тел, связывает миллионы планет и звезд, определяет их вращение и движение по орбитам. Одна и та же сила, под влиянием которой яблоко падает по направлению к центру земли, заставляет нашу планету вращаться вокруг Солнца, а Луну вокруг Земли.

Чем больше планета или звезда, тем сильнее притягивает она другие небесные тела. Масса Луны гораздо меньше массы Земли, и притяжение на Луне составляет всего лишь одну шестую часть земного; это означает, что человек на Луне весит в шесть раз меньше, чем на Земле.

На Марсе человек весит в три раза меньше, на Венере разница будет небольшая, так как масса этой планеты весьма близка к массе Земли (81 процент массы Земли). На самой маленькой планете солнечной системы - Меркурии, человеку было бы весьма неудобно передвигаться - его вес был бы в 27 раз меньше, чем на Земле, и любой его шаг превращался бы в огромный прыжок.

Наоборот, если кому-либо из космонавтов удалось бы опуститься на поверхность крупнейшей планеты солнечной системы - Юпитера, он встретился бы с трудностями совершенно обратного порядка: его вес увеличился бы против земного во много раз, и он практически был бы лишен способности передвигаться собственными силами.

Сила притяжения зависит также от расстояния. Железная гиря, весящая на поверхности Земли 1 кг, на высоте 400 км весит только 900 гр, а на высоте 25 000 км - всего лишь 5 гр. Если говорить точно - сила земного притяжения уменьшается пропорционально квадрату расстояния от центра земного шара.

Возникает законный вопрос, почему искусственные спутники Земли при вращении вокруг нее по орбите на высоте 200 или 300 километров не падают?

Чтобы легче уяснить себе характер сил, возникающих во время полета космического корабля по круговой орбите, проделаем следующий опыт.

Привяжем к спиральной пружине с одного ее конца какой-нибудь тяжелый предмет и, придерживая пружину за другой конец, станем ее вращать. Мы заметим, что пружина вытянется под влиянием груза. Если уменьшить обороты, пружина сократится, если, наоборот, увеличить скорость вращения, пружина удлинится. Можно предположить, что при очень быстром вращении пружина лопнет, и груз полетит в пространство.

Здесь играют роль две силы, действующие в противоположных направлениях. Одна из них, сила натяжения пружины, стремится притянуть груз к руке и в нашем опыте представляет собой силу земного притяжения, вторая, центробежная сила, являющаяся следствием вращения груза, аналогична центробежной силе, вызванной вращением спутника вокруг Земли. Это значит, что центробежная сила уменьшает силу притяжения. Если подобрать эти силы так, чтобы они взаимно уравновешивали друг друга, груз потеряет свой вес, очутится - как это принято считать - в состоянии невесомости.

Подобным образом обстоит дело, когда последняя ступень ракеты, сообщит космическому кораблю соответствующую скорость движения.

Общепринято считать, что приливы и отливы в мировом океане возникают из-за гравитационного влияния Луны. Так называемое, приливное взаимодействие. Отдельный вопрос, что влияние Солнца превосходит по силе лунное в 200 раз. Но так или иначе, его принимать в расчёт не принято. Как не принято принимать в расчёт и то, что и Луна находится под постоянным воздействием не только Земли, но и Солнца. Объясняется это разницей напряжённости гравитационных полей. Во как!
Тоисть, солнечное какбэ на пару порядков сильнее, но "напряженности" ему не хватат немножечко. То ли дело лунное! Здесь вам не тут.
И я подумал: а что мы знаем про гравитацию?

Гравитацию изобрёл Ньютон. Имя его известно, добавить тут нечего - наш человек. Был масоном высокого уровня посвящения и это тоже давно не секрет.
Но что нам Знания, если нет Опыта? И Генри Кавендиш этот пробел восполнил. Именно он придумал гравитационную постоянную, которую надо воткнуть теперь в каждую формулу, чтоб увидеть свет Истины. Его опыт можно найти в "свободной" Википедии.
Далее всё просто. Берём нитку, привязываем к ней гайку и прикладываем наш чудо-отвес к углу собственного дома. Как не притягивается?! Должно! У старика Генри всё работало!
Безрукая нынче молодёжь какая-то. Общество потребителей, мля((

Однако, посмотрим на мир внимательно. Принято считать, что гравитацию создаёт вещество. По типу, чем его больше, тем она сильнее. Ну что же, проверим.
- масса Луны меньше Земной в 80 раз, а тяготение меньше только в 6.
- Уран тяжелее Земли в 14,5 раз, а тяготение на поверхности меньше(!) земного. Зато вторая космическая скорость в два раза выше. И как с этим жить?
Не верите? А я что могу? Только формулы, только Наука!

Ускорение свободного падения на поверхности Земли g (обычно произносится как «Же» ) варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах . Стандартное («нормальное») значение, принятое при построении систем единиц , составляет g = 9,80665 м/с² . Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря . В приблизительных расчётах его обычно принимают равным 9,81; 9,8 или 10 м/с².

Ускорение свободного падения на поверхности некоторых небесных тел, м/с 2
Солнце 273,1
Меркурий 3,68—3,74 Венера 8,88
Земля 9,81 Луна 1,62
Церера 0,27 Марс 3,86
Юпитер 23,95 Сатурн 10,44
Уран 8,86 Нептун 11,09
Плутон 0,61

Небесное тело

Масса (по отношению к массе Земли)

2-я космическая скорость, км/с

Луна 0,0123 2,4
Меркурий 0,055 4,3
Марс 0,108 5,0
Венера 0,82 10,22
Земля 1 11,2
Уран 14,5 22,0
Нептун 17,5 24,0
Сатурн 95,3 36,0
Юпитер 318,3 61,0
Солнце 333 000 617,7
Нейтронная звезда 666 000 200 000
Кварковая звезда 833 500 ?
Чёрная дыра 832 500 - 5,6·10 15 >299 792,458

Да что нам Луна?! Не хлебом единым, такзать. Вот, напрмер, у Сатурна есть куча колец и куча же спутников, которые крутяццо в разных плоскостях.

Есть там такой спутник Диона. Интересен он тем, что ваще обнаглел и вращается аж в самой плоскости кольца. Что это значит? А означает это, что собственной гравитации он не имеет. Иначе бы за пару-тройку оборотов собрал бы всё кольцо. Или, если бы имел скорость вращения одинаковую с кольцом, то собрал бы пыль вокруг себя и наблюдали бы мы его несколько иначе - была бы в кольце аккуратная дырочка, а в центре её Диона.
Про малые тела и их тяготение можно пофтыкать дополнительно:

Интересно, а с какой скоростью передаётся гравитация?

"Известны ли какие-нибудь экспериментальные данные о скорости действия тяготения? Конечно, известны: этим вопросом занимался ещё Лаплас в XVII веке. Он сделал вывод о скорости действия тяготения, проанализировав известные на то время данные о движении Луны и планет. Идея заключалась вот в чём. Орбиты Луны и планет не являются круговыми: расстояния между Луной и Землёй, а также между планетами и Солнцем, непрерывно изменяются. Если соответствующие изменения сил тяготения происходили бы с запаздываниями, то орбиты эволюционировали бы. Но многовековые астрономические наблюдения свидетельствовали о том, что если даже такие эволюции орбит происходят, то их результаты ничтожны. Отсюда Лаплас получил нижнее ограничение на скорость действия тяготения: это нижнее ограничение оказалось больше скорости света в вакууме на 7 (семь) порядков.

Но это был лишь первый шажок. Современные технические средства дают ещё более впечатляющий результат! Так, Ван Фландерн говорит об эксперименте, в котором, на некотором интервале времени, принимались последовательности импульсов от пульсаров, расположенных в различных местах небесной сферы - и все эти данные обрабатывались совместно. По сдвигам частот повторения импульсов определяли текущий вектор скорости Земли. Беря производную этого вектора по времени, получали текущий вектор ускорения Земли. Оказалось, что компонента этого вектора, обусловленная притяжением к Солнцу, направлена не к центру мгновенного видимого положения Солнца, а к центру его мгновенного истинного положения. Свет испытывает боковой снос (аберрацию по Брэдли), а тяготение - нет! По результатам этого эксперимента, нижнее ограничение на скорость действия тяготения превышает скорость света в вакууме уже на 11 порядков. Это называется «с каждым днём - всё радостнее жить!» (с)

Но вернёмся к Луне:

Принято считать, что она своим тяготением поднимает волну в мировом океане аж на полметра. Но как же тогда спутники, вращающиеся по геостационарной орбите? и почему же они, в конце концов, сходят с орбиты, с последующим затоплением? Ведь Земля своим вращением должна выносить их в открытый космос. Ведь именно так нам объясняют ежегодное удаление Луны на 4см. Получается, что и Луна их с орбиты не сдёргивает, и Земля не раскручивает - парадокс получается.

Может нам что-то забыли рассказать?
Давайте рассмотрим внимательно орбитальное вращение пары Земля-Луна.

Что я могу сказать... 4 см в год тут, мягко говоря, и не пахнет. В двух словах, это выглядит следующим образом. Луна оказывает динамическое влияние на движение Земли, но... только вдоль(!) орбиты. Иначе говоря, двигаясь вокруг Солнца, Земля либо притормаживает, либо ускоряется, подстраиваясь под Луну. Поперечного движения не зафиксировано!
А оно обязательно должно было бы быть, если пара вращается вокруг общего центра масс (барицентра). Тогда бы и притормаживать необходимости не было - было бы совместное "ковыляние" во мгле, некий танец хромых на четыре ноги.

Из другого источника:
" Вопрос: Луна - планета или космический корабль?
ММ Луна - это космический объект, планета, спутник Земли, база для пришельцев из Космоса. Луна - перевалочная база, техническое сооружение, со множеством функций. Луна имеет множество назначений, одно их которых - балансировка Земли на Дне Солнечной системы.
Вопрос: Кто использует Луну, и в каких целях?
Луна имеет строго ориентированное положение в пространстве. Она словно якорь для Земли, способный выдерживать сильнейшие штормы. До настоящего времени Луна была балансиром и отягчающим элементом, словно маятник у часов, который прокручивает механизм в строгом циклическом вращении. Земля стала слишком зависимой от Луны по причине того, что Луна вошла в желтые сферы планеты (находящиеся в глубине Земли), своим магнитным тяжем, который держится на магнитном резонансе. Именно это явление лежит в основе приливов и отливов вод морей и океанов, происходящих на Земле непрестанно, в зависимости от фазы Луны.
Луна - освоена цивилизацией лунитов - питрисов, которые живут на ней еще с тех времен, когда Луна принадлежала к совершенной иной планете и была спутником не Земли, а разрушенной планеты Фаэтон.

О притяжении Луны Солнцем.

Попытки объяснить законы, по которым движется Луна, зачастую выявляют парадоксальные факты. Например, прямой подсчет отношения силы притяжения Луны к Солнцу и Луны к Земле дает интересный результат: Fл-з/Fл-с=Mз/Mc·(R/r) 2 =3·10 -6 ·390 2 =0,457; 1/0,457=2,19. Солнце притягивает Луну более чем в два раза сильнее, чем Земля. На , но не очень подробно.

Рассмотрим движение Луны во вращающейся вместе с Землей вокруг Солнца системе отсчета (Рис. 1)

Здесь Fип / Fин - силы инерции в полнолуние/новолуние

Fзгп/ Fзгн - силы земной гравитации в полнолуние/новолуние

Fсгп/ Fсгн - силы земной гравитации в полнолуние/новолуние

Баланс сил на единицу массы Луны (ускорений) сведем в таблицу.

Итак, в полнолуние суммарная сила гравитации Земли и Солнца превышает силу инерции почти на величину силы гравитации Земли! Т.е. гравитация Солнца удваивает земное притяжение. В новолуние избыток инерции также прижимает Луну к Земле, как бы удваивая земную гравитацию. Парадокс.

Мы привыкли, что тела в космосе находятся в невесомости, то есть имеют нулевой вес, что означает, что силы гравитации полностью скомпенсированы силами инерции. Однако для Луны это не так. Ее вес практически никогда не бывает нулевым.

Чтобы избавиться от этого терзающего разум парадокса придумали вот что!

Чтобы оценить влияние Солнца на Луну нужно брать не силу притяжения ее к Солнцу, а деленную пополам разность сил притяжения Луны к Солнцу в эпоху новолуния и полнолуния!

Другими словами, Земля покоится, а Луна движется в слегка неоднородном (~3,14·10 -5 м/с 2 или 1/90 земного притяжения) в пределах полуоси лунной орбиты гравитационном поле Солнца, которое вращается вокруг Земли.

Только в такой трактовке можно построить динамическую модель движения Луны под влиянием сил инерции вращения вокруг неподвижной гравитирующей Земли с учетом однопроцентного возмущения летающего вокруг Земли Солнца.

Как все происходит на самом деле знает только сами знаете Кто…

______________________

Для справки.

Гравитационная постоянная G=6,67·10 -11

Масса Земли 5,9736·10 24 кг

Масса Солнца 1,9891·10 30 кг

Масса Луны 7,3477·10 22 кг

Большая полуось орбиты Земли 149 598 261 000 м / в расчетах 150 000 000 км

Среднее расстояние от Земли до Луны 384 399 000 м / в расчетах 384 000 км

Сидерический период обращения Земли 365,256366004 сут / Частота Ω=1,991·10 -7 рад/с

Сидерический период обращения Луны 27,321582 / Частота ω=2,662·10 -6